Vindya Vashishth, SRF Department of Physics, Indian Institute of Technology (BHU), Varanasi

vindyavashishth.rs.phy19@iitbhu.ac.in

- vindya.vashishth@gmail.com
- Vindya.vashishth@gmail.com

Education

July 2019 – Present	Ph.D., Indian Institute of Technology (BHU), Varanasi in Solar and Stellar Physics Thesis Title: Understanding the variabilities of magnetic cycles of Sun-like stars through dynamo modelling.
August 2016 – June 2018	M.Sc., Gautam Buddha University in Applied Physics
August 2013 – June 2016	B.Sc. (H), Gragi College, University Of Delhi in Physics and Astrophysics

Technical Skills

Coding	Fortran, C, C++, MATLAB, Scilab, Java, Python, IDL, GNU plot, Mysql
Advanced Code	Surya (solves 2D kinematic dynamo problem) and Pencil Code (for compressible magnetohydrodynamic flows)
Data Analysis	Origin, Python, IDL, MATLAB
Operating System	Microsoft Windows, Linux
Typesetting	断 _E X, MS word, LibreOffice
Languages	Strong reading, writing, and speaking competencies in English and Hindi.

Organizational Skills

- Organized and facilitated a successful academic workshop, "3rd Aditya-L1 Workshop" at IIT (BHU) from $25^{th} 27^{th}$ February 2023.
- Organized the "Departmental Annual Retreat 2023" held on 7th January 2023 with 150 attendees.
- Been Chief Coordinator of C. V. Raman Club of Science, Technology, and Innovation of Department of Applied Physics, Gautam Buddha University.
- Contributed and facilitated as coordinator in the SCIENCE DAY-2018 held at Gautam Buddha University.

Awards and Achievements

- Received the IAU grant of 3000€ for attending IAUGA-2022.
- Awarded DST-INSPIRE fellowship.
- Qualified national level exams naming, CSIR NET and GATE in 2019.
- University Topper at Gautam Buddha University in 2018.

Research Interests

Mean-Field Dynamo theory and its applications to the Sun and other Sun-like stars, turbulence, convection, magnetic field morphology, solar and stellar cycle, large-scale flows such as differential rotation and meridional circulation in the solar and stellar convection zone, stellar cycle variability and grand-minima occurrence in sun-like stars.

Research Publications

Vashishth, V., Karak, B. B., & Kitchatinov, L. (2023). Dynamo modelling for cycle variability and occurrence of grand minima in Sun-like stars: rotation rate dependence. *Monthly Notices of the Royal Astronomical Society*, *522*(2), 2601–2610. Ø doi:10.1093/mnras/stad1105. arXiv: 2304.05819 [astro-ph.SR]

2 **Vashishth**, **V.** (2022). Modelling the occurrence of grand minima in sun-like stars using a dynamo model. *arXiv e-prints*, arXiv:2212.01795. *Intersolution* doi:10.48550/arXiv.2212.01795. arXiv: 2212.01795 [astro-ph.SR]

Vashishth, V., Karak, B. B., & Kitchatinov, L. (2021). Subcritical dynamo and hysteresis in a Babcock-Leighton type kinematic dynamo model. *Research in Astronomy and Astrophysics*, 21(10), 266.
doi:10.1088/1674-4527/21/10/266. arXiv: 2107.01546 [astro-ph.SR]

4 Kumar, P., Karak, B. B., & Vashishth, V. (2021). Supercriticality of the Dynamo Limits the Memory of the Polar Field to One Cycle. *The Astrophysical Journal*, *913*(1), 65. *O* doi:10.3847/1538-4357/abf0a1. arXiv: 2103.11754 [astro-ph.SR]

5 Karak, B. B., Tomar, A., & Vashishth, V. (2020). Stellar dynamos with solar and antisolar differential rotations: Implications to magnetic cycles of slowly rotating stars. *Monthly Notices of the Royal Astronomical Society*, 491(3), 3155–3164. *O* doi:10.1093/mnras/stz3220. arXiv: 1910.11893 [astro-ph.SR]

Project

March 2019 – July 2019 Ramanujan Fellowship sponsored project by Science & Engineering Research Board (SERB), under Dr. Bidya Binay Karak, Department of Physics, Indian Institute of Technology (BHU), Varanasi. Project Title: Stellar dynamos with solar and antisolar differential rotations

Conferences

01–03 March 2023	Poster Presentation in the "41 st Annual Meeting of the Astronomical Society of India (ASI) ", on "Hysteresis near dynamo transition of the large-scale dynamo in the presence of the small-scale dynamo".
21 February 2023	Talk in the "ISSI Team 474 online meeting ", on "Changes of stellar cycle variability and frequency of grand minima with stellar rotation in dynamo models".
02–11 August 2022	Contributed talk in the "IAU General Assembly Focus Meeting 5", on "Modeling the occurrence of grand minima in sun-like stars using a dynamo model".
04–10 May 2022	Oral Presentation in the "Pencil Code user meeting 2022–18th Annual Meeting for Pencil Code Developers and Users", on "Hysteresis of the large- scale dynamo in presence of the small-scale dynamo".
25–29 March 2022	Poster Presentation in the "40 th Annual Meeting of the Astronomical Society of India (ASI)", on "Modelling the occurrence of grand minima in sun- like stars using a dynamo model".
21–25 February 2022	Attended "15 th Quadreninial Solar-Terrestrial Physics Symposium (STP- 15)"
15 November 2021	Oral Presentation in "The 2 nd International Symposium on Space Science (ISSS-21)" , on "Sub-Critical Dynamos and Hysteresis in the Babcock-Leighton Type Kinematic Dynamo Models".

Conferences (continued)

06–10 September 2021	Poster Presentation in the " 16^{th} European Solar Physics Meeting (ESPM-16) ", on "Sub-Critical Dynamos and Hysteresis in the Babcock-Leighton Type Kinematic Dynamo Models".
01–04 March 2021	Poster Presentation in the International conference on "Advances in Observations and Modelling of Solar Magnetism and Variability ", on "Sub-Critical Dynamos and Hysteresis in the Babcock-Leighton Type Kinematic Dynamo Models".
18–23 February 2021	Attended " 39^{th} Annual Meeting of the Astronomical Society of India (ASI)"

Teaching Assistant at Department of Physics, IIT(BHU) Varanasi

- Introduction to Engineering Electromagnetics (Course code: PHY102)
- Classical Electrodynamics (Course code: PHY404)
- Classical, Quantum, and Relativistic Mechanics (Course code: PHY101)
- Classical Mechanics Laboratory (Course code: PHY101-Lab)
- Optics Laboratory (Course code: PHY102-Lab)